일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- C언어
- 선형대수
- effective python
- RNN
- yarn
- 코딩더매트릭스
- NumPy
- 파이썬
- tensorflow
- Java
- GRU
- python
- 하이브
- collections
- C
- 알고리즘
- 텐서플로
- Sort
- codingthematrix
- 딥러닝
- hadoop2
- graph
- recursion
- 주식분석
- 그래프이론
- 하둡2
- scrapy
- HelloWorld
- hive
- LSTM
- Today
- Total
목록SVM (2)
EXCELSIOR
이번 SVM 관련 포스팅은 '오일식 저, 패턴인식' 교재와 '핸즈온 머신러닝' 그리고 'ratsgo' 블로그를 참고하여 작성하였습니다. SVM에 대해 간략하게 알고 싶으신 분들은 여기를 참고하시면 됩니다.SVM 이란?SVM(Support Vector Machine)은 러시아 과학자 Vladimir Vapnik가 1970년대 후반에 제안한 알고리즘으로, 그 당시에는 크게 주목 받지 못했다. 하지만 1990년대에 들어 분류(classification)문제에서 우수한 일반화(generalization) 능력이 입증되어 머신러닝 알고리즘에서 인기 있는 모델이 되었다고 한다. 그리고 SVM은 일반화 측면에서 다른 분류 모델과 비교하여 더 좋거나 대등한 것으로 알려져 있다.또한, SVM은 선형 또는 비선형 분류 뿐..
1. Support Vector Machine, SVM이란?Support Vector Machine(SVM)은 원 훈련(또는 학습)데이터를 비선형 매핑(Mapping)을 통해 고차원으로 변환한다. 이 새로운 차원에서 초평면(hyperplane)을 최적으로 분리하는 선형분리를 찾는다. 즉, 최적의 Decision Boundary(의사결정 영역)를 찾는다. 그렇다면 왜 데이터를 고차원으로 보내는 것일까? 예를 들어, 아래의 [그림1]과 같이 A=[a, d], B=[b, c]는 2차원에서 non-linearly separable(비선형 분리)하다. 이를 통해 한 차원 높은 3차원으로 Mapping하게 되면 linearly separable(선형 분리)하게 된다. 따라서, 충분히 큰 차원으로 적절한 비선형 매핑..