일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- 코딩더매트릭스
- 선형대수
- 그래프이론
- codingthematrix
- RNN
- scrapy
- tensorflow
- collections
- hadoop2
- GRU
- yarn
- HelloWorld
- Sort
- 하둡2
- graph
- 파이썬
- 텐서플로
- C언어
- LSTM
- Java
- C
- 알고리즘
- hive
- python
- 하이브
- 딥러닝
- NumPy
- recursion
- effective python
- 주식분석
- Today
- Total
목록텐서보드 (3)
EXCELSIOR
Chap06 - 텍스트 2: 단어 벡터, 고급 RNN, 임베딩 시각화5장에서 살펴본 텍스트 시퀀스를 좀 더 깊이 알아보며, word2vec이라는 비지도학습 방법을 사용하여 단어 벡터를 학습하는 방법과 텐서보드를 사용해서 임베딩을 시각화 하는 방법에 대해 알아보자. 그리고 RNN의 업그레이드 버전인 GRU에 대해서 알아보자. 6.1 단어 임베딩 소개5.3.2에서 텐서플로(TensorFlow)를 이용해 텍스트 시퀀스를 다루는 방법을 알아 보았다. 단어 ID를 저차원의 Dense vector로의 매핑을 통해 단어 벡터를 학습시켰다. 이러한 처리가 필요한 이유는 RNN의 입력으로 넣어 주기 위해서였다.TensorFlow is an open source software library for high perform..
Chap05 - 텍스트 1: 텍스트와 시퀀스 처리 및 텐서보드 시각화텐서플로에서 시퀀스(sequence) 데이터인 텍스트를 어떻게 다루는지 알아보고, RNN 구현방법 및 텐서보드를 이용한 시각화에 대해 알아본다. 그 다음 단어 임베딩 학습 및 LSTM을 구현해본다. 5.1 시퀀스 데이터의 중요성Chap04-합성곱 신경망 CNN에서 이미지의 공간(spatial) 구조를 이용하여 CNN을 구현하였고, 이러한 구조를 활용하는 것이 중요하다는 것을 알아 보았다. 이번에 알아볼 순차형 데이터 구조인 시퀀스(sequence) 데이터 또한 중요하고 유용한 구조이다. 시퀀스 데이터란 각각의 데이터가 순서가 있는 데이터를 말하며, 다양한 분야에서 찾을 수가 있다. 예를 들어, 음성신호, 텍스트, 주가 데이터 등이 있다...
Chap01 - 개요1.1 텐서플로 란? 텐서플로(TensorFlow)는 구글(Google)에서 만든, 딥러닝 프로그램을 쉽게 구현할 수 있도록 다양한 기능을 제공해주는 라이브러리다. 텐서플로 자체는 기본적으로 C++로 구현 되어 있으며, 아래의 그림과 같이 Python, Java, Go 등 다양한 언어를 지원한다. 하지만, 파이썬을 최우선으로 지원하며 대부분의 편한 기능들이 파이썬 라이브러리로만 구현되어 있어 Python에서 개발하는 것이 편하다.출처: tensorflow.org 또한, 브라우저에서 실행가능한 시각화 도우인 텐서보드(TensorBoard)를 제공하여, 딥러닝 학습 과정을 추적하는데 유용하게 사용된다. 1.2 텐서플로의 의미TensorFlow에서 Tensor(텐서)란 딥러닝에서 데이터를 ..