Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
Tags
- scrapy
- 딥러닝
- tensorflow
- graph
- 알고리즘
- NumPy
- LSTM
- 하이브
- effective python
- 하둡2
- yarn
- C언어
- 주식분석
- Java
- hadoop2
- RNN
- recursion
- GRU
- C
- collections
- python
- hive
- 파이썬
- Sort
- codingthematrix
- 텐서플로
- 선형대수
- 코딩더매트릭스
- HelloWorld
- 그래프이론
Archives
- Today
- Total
목록라그랑지안 (1)
EXCELSIOR
서포트 벡터머신, SVM - (2)
이번 SVM 관련 포스팅은 '오일식 저, 패턴인식' 교재와 '핸즈온 머신러닝' 그리고 'ratsgo' 블로그를 참고하여 작성하였습니다. SVM에 대해 간략하게 알고 싶으신 분들은 여기를 참고하시면 됩니다.SVM 이란?SVM(Support Vector Machine)은 러시아 과학자 Vladimir Vapnik가 1970년대 후반에 제안한 알고리즘으로, 그 당시에는 크게 주목 받지 못했다. 하지만 1990년대에 들어 분류(classification)문제에서 우수한 일반화(generalization) 능력이 입증되어 머신러닝 알고리즘에서 인기 있는 모델이 되었다고 한다. 그리고 SVM은 일반화 측면에서 다른 분류 모델과 비교하여 더 좋거나 대등한 것으로 알려져 있다.또한, SVM은 선형 또는 비선형 분류 뿐..
Machine_Learning(ML)
2018. 8. 16. 22:47