Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- C
- effective python
- 파이썬
- tensorflow
- RNN
- LSTM
- collections
- Java
- recursion
- 그래프이론
- C언어
- 텐서플로
- 코딩더매트릭스
- 알고리즘
- hadoop2
- hive
- Sort
- NumPy
- graph
- GRU
- HelloWorld
- 하이브
- 주식분석
- codingthematrix
- 하둡2
- 딥러닝
- yarn
- 선형대수
- scrapy
- python
Archives
- Today
- Total
EXCELSIOR
하둡2 예제실행 본문
1. HDFS에 파일 저장하기
- /usr/local/hadoop2/에 있는 'NOTICE.txt' 파일을 HDFS에 저장한다.
- 하둡2는 하둡1과는 달리 /user 디렉터리도 관리자가 직접 생성해야 한다.
- hadoop 명령어의 fsshell은 사용 중지됐기 때문에 hdfs의 dfs 옵션을 이용한다.
bin/hdfs dfs -mkdir /user bin/hdfs dfs -mkdir /user/root ## 반드시 /user/xxxx <- xxxx는 사용자 이름과 일치해야한다. bin/hdfs dfs -mkdir /user/root/conf ##user -> root -> conf 디렉터리 생성 bin/hdfs dfs -put NOTICE.txt /user/root/conf ## NOTICE.txt 파일 저장
2. wordcount 예제실행
#입력값은 conf/ 출력값은 output폴더(자동생성)에 저장 bin/yarn jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.3.jar wordcount conf output #결과 16/11/11 22:11:52 INFO client.RMProxy: Connecting to ResourceManager at localhost/127.0.0.1:8032 16/11/11 22:11:52 INFO input.FileInputFormat: Total input paths to process : 1 16/11/11 22:11:53 INFO mapreduce.JobSubmitter: number of splits:1 16/11/11 22:11:53 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1478867956244_0002 16/11/11 22:11:53 INFO impl.YarnClientImpl: Submitted application application_1478867956244_0002 16/11/11 22:11:53 INFO mapreduce.Job: The url to track the job: http://0.0.0.0:8089/proxy/application_1478867956244_0002/ 16/11/11 22:11:53 INFO mapreduce.Job: Running job: job_1478867956244_0002 16/11/11 22:12:00 INFO mapreduce.Job: Job job_1478867956244_0002 running in uber mode : false 16/11/11 22:12:00 INFO mapreduce.Job: map 0% reduce 0% 16/11/11 22:12:04 INFO mapreduce.Job: map 100% reduce 0% 16/11/11 22:12:09 INFO mapreduce.Job: map 100% reduce 100% 16/11/11 22:12:09 INFO mapreduce.Job: Job job_1478867956244_0002 completed successfully 16/11/11 22:12:09 INFO mapreduce.Job: Counters: 49 File System Counters FILE: Number of bytes read=11392 FILE: Number of bytes written=260741 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=15090 HDFS: Number of bytes written=8969 HDFS: Number of read operations=6 HDFS: Number of large read operations=0 HDFS: Number of write operations=2 Job Counters Launched map tasks=1 Launched reduce tasks=1 Data-local map tasks=1 Total time spent by all maps in occupied slots (ms)=1854 Total time spent by all reduces in occupied slots (ms)=2388 Total time spent by all map tasks (ms)=1854 Total time spent by all reduce tasks (ms)=2388 Total vcore-milliseconds taken by all map tasks=1854 Total vcore-milliseconds taken by all reduce tasks=2388 Total megabyte-milliseconds taken by all map tasks=1898496 Total megabyte-milliseconds taken by all reduce tasks=2445312 Map-Reduce Framework Map input records=437 Map output records=1682 Map output bytes=20803 Map output materialized bytes=11392 Input split bytes=112 Combine input records=1682 Combine output records=614 Reduce input groups=614 Reduce shuffle bytes=11392 Reduce input records=614 Reduce output records=614 Spilled Records=1228 Shuffled Maps =1 Failed Shuffles=0 Merged Map outputs=1 GC time elapsed (ms)=72 CPU time spent (ms)=1210 Physical memory (bytes) snapshot=455045120 Virtual memory (bytes) snapshot=3837673472 Total committed heap usage (bytes)=349700096 Shuffle Errors BAD_ID=0 CONNECTION=0 IO_ERROR=0 WRONG_LENGTH=0 WRONG_MAP=0 WRONG_REDUCE=0 File Input Format Counters Bytes Read=14978 File Output Format Counters Bytes Written=8969
3. 결과 확인
bin/hdfs dfs -cat output/part-r-00000 | tail -5 works 1 writing, 1 written 7 you 2 zlib 1
'DataBase > Hadoop' 카테고리의 다른 글
Apache-Hive : 하이브QL(Hive QL) - 테이블 생성 (0) | 2016.11.21 |
---|---|
하이브 (Apache Hive) 개념 및 설치 (아파치 더비 사용) (0) | 2016.11.14 |
하둡2 설치 및 실행 (가상 분산 모드) (4) | 2016.11.08 |
하둡2 - 네임노드 HA (0) | 2016.11.07 |
하둡2 - 얀(YARN) (0) | 2016.11.04 |
Comments